Determining Number Concentrations and Diameters of Polystyrene Particles by Measuring the Effective Refractive Index of Colloids Using Surface Plasmon Resonance

Publication year: 2016
Authors: Tuoriniemi J. 1, Moreira B. 1, Safina G. 1,2

1 - Department of Chemistry and Molecular Biology, University of Gothenburg , Kemigården 4, 412 96 Gothenburg, Sweden
2 - Division of Biological Physics, Department of Physics, Chalmers University of Technology , Kemigården 1, 412 96 Gothenburg, Sweden

Published in: Langmuir, 2016, Vol. 32 (41), p. 10632–10640
doi: 10.1021/acs.langmuir.6b02684

The capabilities of surface plasmon resonance (SPR) for characterization of colloidal particles were evaluated for 100, 300, and 460 nm nominal diameter polystyrene (PS) latexes. First the accuracy of measuring the effective refractive index (neff) of turbid colloids using SPR was quantified. It was concluded that for submicrometer sized PS particles the accuracy is limited by the reproducibility between replicate injections of samples. An SPR method was developed for obtaining the particle mean diameter (dpart) and the particle number concentration (cp) by fitting the measured neff of polystyrene (PS) colloids diluted in series with theoretical values calculated using the coherent scattering theory (CST). The dpart and cp determined using SPR agreed with reference values obtained from size distributions measured by scanning electron microscopy (SEM), and the mass concentrations stated by the manufacturer. The 100 nm particles adsorbed on the sensing surface, which hampered the analysis. Once the adsorption problem has been overcome, the developed SPR method has potential to become a versatile tool for characterization of colloidal particles. In particular, SPR could form the basis of rapid and accurate methods for measuring the cp of submicrometer particles in dispersion.

MP-SPR keywords: colloids, concentrations, diameters, nanometer particles, polystyrene