Integration of Biorecognition Elements on PEDOT Platforms through Supramolecular Interactions

Publication year: 2017
Authors: Sappia L.D. 1,2, Piccinini E. 3, Marmisollé W. 3, Santilli N. 1, Maza E. 4, Moya S. 4, Battaglini F. 5, Madrid R.E. 1,2, Azzaroni O. 3
Affiliations:

1 - Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Fac. de Cs. Exactas y Tecnología, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
2 - Instituto Superior de Investigaciones Biológicas, CONICET, San Miguel de Tucumán, Argentina
3 - Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, La Plata, Argentina
4 - Soft Matter Nanotechnology Group, San Sebastián, Gipuzkoa, Spain
5 - INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina

Published in: Advanced Materials Interfaces, 2017, 1700502
doi: 10.1002/admi.201700502

The rapidly emerging field of organic bioelectronics exploits the functional versatility of conducting polymers to transduce biological recognition events into electronic signals. For the majority of biosensors or biomedical devices, immobilization of a biorecognition element is a critical step to improve the biotic/abiotic interface. In this work, a simple strategy is described to construct large-area all-plastic poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes displaying carbohydrate biorecognizable motifs. First, the method involves the preparation of PEDOT-poly(allylamine) composites through supramolecular interactions. It is demonstrated by Raman and X-ray spectroscopy and cyclic voltammetry that the PEDOT:poly(allylamine) ratio and the film electoactivity can be easily controlled. Then, carbohydrate motifs are covalently anchored to the primary amine groups by a straightforward route using divinylsulfone chemistry. The recognition-driven assembly of the lectin concanavalin A (Con A) and the glycoenzyme glucose oxidase (GOx) onto mannosylated surfaces is demonstrated by surface plasmon resonance spectroscopy. Furthermore, the bioelectrocatalytic glucose detection mediated by the assembled enzyme is studied for all-plastic and gold electrodes. Interestingly, the synergistic combination of conducting polymers and recognition-directed assembly leads to a 2.7-fold enhancement of the bioelectrocatalitic signal. Finally, it is proved that Con A/GOx nanoarchitectures can be constructed onto PEDOT platforms using the layer-by-layer technique.


MP-SPR keywords: assembly of proteins, biosensor development, cysteamine self-assembly (SAM), development of organic bioelectronics, glycoenzyme glucose oxidase (GOx), lectin concanavalin A (Con A), mannosylated gold substrates, surface coverage, surface glycosylation