You can also use advanced search to find preferred publications.
Xylan-cellulose thin film platform for assessing xylanase activity
Enzymatic degradation of plant polysaccharide networks is a complex process that involves disrupting an intimate assembly of cellulose and hemicelluloses in fibrous matrices. To mimic this assembly and to elucidate the efficiency of enzymatic degradation in a rapid way, models with physicochemical equivalence to natural systems are needed. Here, we employ xylan-coated cellulose thin films to monitor the hydrolyzing activity of an…
An SPR-based method for Hill coefficient measurements: the case of insulin-degrading enzyme
Insulin-degrading enzyme (IDE) is a highly conserved zinc metallopeptidase and is capable to catalytically cleave several substrates besides insulin, playing a pivotal role in several different biochemical pathways. Although its mechanism of action has been widely investigated, many conundrums still remain, hindering the possibility to rationally design specific modulators which could have important therapeutical applications…
Evaluating the mechanism of milk protein as an efficient lignin blocker for boosting the enzymatic hydrolysis of lignocellulosic substrates
The residual lignin in pretreated biomass significantly hinders the bio-conversion of cellulose into monosaccharides. In this work, a low-cost non-enzymatic protein from defatted milk was proposed to block the lignin–enzyme adsorption sites for improving the enzymatic digestibility of diluted acid pretreated bamboo residues (DAP-BR). The enzymatic hydrolysis results showed that the sugar yield significantly improved…
Functional Delineation of a Protein–Membrane Interaction Hotspot Site on the HIV-1 Neutralizing Antibody 10E8
Antibody engagement with the membrane-proximal external region (MPER) of the envelope glycoprotein (Env) of HIV-1 constitutes a distinctive molecular recognition phenomenon, the full appreciation of which is crucial for understanding the mechanisms that underlie the broad neutralization of the virus. Recognition of the HIV-1 Env antigen seems to depend on two specific features developed by…
Nanostructured Lipid Carriers Loaded with Dexamethasone Prevent Inflammatory Responses in Primary Non-Parenchymal Liver Cells
Liver inflammation represents a major clinical problem in a wide range of pathologies. Among the strategies to prevent liver failure, dexamethasone (DXM) has been widely used to suppress inflammatory responses. The use of nanocarriers for encapsulation and sustained release of glucocorticoids to liver cells could provide a solution to prevent severe side effects associated with…
PEGylation of the antimicrobial peptide LyeTx I-b maintains structure-related biological properties and improves selectivity
The biological activity of antimicrobial peptides and proteins is closely related to their structural aspects and is sensitive to certain post-translational modifications such as glycosylation, lipidation and PEGylation. However, PEGylation of protein and peptide drugs has expanded in recent years due to the reduction of their toxicity. Due to their size, the PEGylation process can…
“Clickable ” Polymer Brush Interfaces: Tailoring Monovalent to Multivalent Ligand Display for Protein Immobilization and Sensing
Facile and effective functionalization of the interface of polymer-coated surfaces allows one to dictate the interaction of the underlying material with the chemical and biological analytes in its environment. Herein, we outline a modular approach that would enable installing a variety of “clickable” handles onto the surface of polymer brushes, enabling facile conjugation of various…
Aptamer-Assisted Protein Orientation on Silver Magnetic Nanoparticles: Application to Sensitive Leukocyte Cell-Derived Chemotaxin 2 Surface Plasmon Resonance Sensors
Leukocyte cell-derived chemotaxin 2 (LECT2) has been proved to be a potential biomarker for the diagnosis of liver fibrosis. In this work, a sensitive surface plasmon resonance (SPR) assay for LECT2 analysis was developed. Tyrosine kinase with immune globulin-like and epidermal growth factor-like domains 1 (Tie1) is an orphan receptor of LECT2 with a C-terminal…
Membrane interactions of the anuran antimicrobial peptide HSP1-NH2: Different aspects of the association to anionic and zwitterionic biomimetic systems
Studies have suggested that antimicrobial peptides act by different mechanisms, such as micellisation, self-assembly of nanostructures and pore formation on the membrane surface. This work presents an extensive investigation of the membrane interactions of the 14 amino-acid antimicrobial peptide hylaseptin P1-NH2 (HSP1-NH2), derived from the tree-frog Hyla punctata, which has stronger antifungal than antibacterial potential. Biophysical and…
Control of Polymer Brush Morphology, Rheology, and Protein Repulsion by Hydrogen Bond Complexation
Polymer brushes are widely used to alter the properties of interfaces. In particular, poly(ethylene glycol) (PEG) and similar polymers can make surfaces inert toward biomolecular adsorption. Neutral hydrophilic brushes are normally considered to have static properties at a given temperature. As an example, PEG is not responsive to pH or ionic strength. Here we show…