Accurate Correction of the “Bulk Response” in Surface Plasmon Resonance Sensing Provides New Insights on Interactions Involving Lysozyme and Poly(ethylene glycol)
Surface plasmon resonance is a very well-established surface sensitive technique for label-free analysis of biomolecular interactions, generating thousands of publications each year. An inconvenient effect that complicates interpretation of SPR results is the “bulk response” from molecules in solution, which generate signals without really binding to the surface. Here we present a physical model for…
Rapid and sensitive detection of PD-L1 exosomes using Cu-TCPP 2D MOF as a SPR sensitizer
Two-dimensional metal organic framework (2D MOF Cu-TCPP) with significantly enhanced photoelectric properties was synthesized by a simple hydrothermal method. The π-stacked electroactive porphyrin molecules of TCPP-based 2D MOF carry out charge transport in the MOF structure. The d-d band transition of Cu2+ and its 2D ultra-thin characteristics can produce excellent near-infrared light absorption to couple with SPR. Three key parameters including the refractive index sensitivity, detection…
Aptamer-Assisted Protein Orientation on Silver Magnetic Nanoparticles: Application to Sensitive Leukocyte Cell-Derived Chemotaxin 2 Surface Plasmon Resonance Sensors
Leukocyte cell-derived chemotaxin 2 (LECT2) has been proved to be a potential biomarker for the diagnosis of liver fibrosis. In this work, a sensitive surface plasmon resonance (SPR) assay for LECT2 analysis was developed. Tyrosine kinase with immune globulin-like and epidermal growth factor-like domains 1 (Tie1) is an orphan receptor of LECT2 with a C-terminal…
Novel diagnostic and prognostic factors for the advanced melanoma based on the glycosylation-related changes studied by biophysical profiling methods
Melanoma is a life-threatening disease due to the early onset of metastasis and frequent resistance to the applied treatment. For now, no single histological, immunohistochemical or serological biomarker was able to provide a precise predictive value for the aggressive behavior in melanoma patients. Thus, the search for quantifying methods allowing a simultaneous diagnosis and prognosis…
Kinetic and thermodynamic insights into the interaction of Aβ1–42 with astaxanthin and aggregation behavior of Aβ1–42: Surface plasmon resonance, microscopic, and molecular docking studies
Amyloid-β 1–42 (Aβ1–42) aggregation is considered as an important process in the pathology of Alzheimer’s disease (AD). Astaxanthin (ATX), a xanthophyll carotenoid, has a broad range of biological activities such as neuroprotective one. The present study aimed to elucidate the interaction of ATX with Aβ1–42, as well as its effect on Aβ1–42 aggregates under different…
Surface Engineering of Graphene through Heterobifunctional Supramolecular-Covalent Scaffolds for Rapid COVID-19 Biomarker Detection
Graphene is a two-dimensional semiconducting material whose application for diagnostics has been a real game-changer in terms of sensitivity and response time, variables of paramount importance to stop the COVID-19 spreading. Nevertheless, strategies for the modification of docking recognition and antifouling elements to obtain covalent-like stability without the disruption of the graphene band structure are…
Lubricin-Inspired Loop Zwitterionic Peptide for Fabrication of Superior Antifouling Surfaces
Biofouling represents great challenges in many applications, and zwitterionic peptides have been a promising candidate due to their biocompatibility and excellent antifouling performance. Inspired by lubricin, we designed a loop-like zwitterionic peptide and investigated the effect of conformation (linear or loop) on the antifouling properties using a combination of surface plasma resonance (SPR), surface force…
Understanding the effects of different residual lignin fractions in acid-pretreated bamboo residues on its enzymatic digestibility
Background During the dilute acid pretreatment process, the resulting pseudo-lignin and lignin droplets deposited on the surface of lignocellulose and inhibit the enzymatic digestibility of cellulose in lignocellulose. However, how these lignins interact with cellulase enzymes and then affect enzymatic hydrolysis is still unknown. In this work, different fractions of surface lignin (SL) obtained from…
Adsorption and Conformation Behavior of Lysozyme on a Gold Surface Determined by QCM-D, MP-SPR, and FTIR
The physicochemical properties of protein layers at the solid–liquid interface are essential in many biological processes. This study aimed to link the structural analysis of adsorbed lysozyme at the water/gold surface at pH 7.5 in a wide range of concentrations. Particular attention was paid to the protein’s structural stability and the hydration of the protein…
Control of Polymer Brush Morphology, Rheology, and Protein Repulsion by Hydrogen Bond Complexation
Polymer brushes are widely used to alter the properties of interfaces. In particular, poly(ethylene glycol) (PEG) and similar polymers can make surfaces inert toward biomolecular adsorption. Neutral hydrophilic brushes are normally considered to have static properties at a given temperature. As an example, PEG is not responsive to pH or ionic strength. Here we show…