Siirry sisältöön

Live Cells


Live cell-based assays  are extremely valuable in applications ranging from drug development, regenerative medicine and point-of-care diagnostics, to biosensor development and biological research on immunity or cancer. Since the first study published in 2013, MP-SPR technology has become a valuable tool to study living cells as an alternative to traditional methods like fluorescence microscopy or flow cytometry. While cell studies using traditional SPR instrumentation are sparse, MP-SPR was able to elucidate nanoparticle uptake kinetics, drug absorption routes and GPCR activation profiles in some recent studies.

MP-SPR is the only real-time technology on the market that allows biologically relevant responses from live cells while maintaining the complexity of these living models.

Live cells_Grown

Using MP-SPR, live cell assays can be carried out following two main approaches depending on the research needs:

Cells grown on sensor surfaces

Cells are grown on the sensor surface using standard cell culture protocols. Sample analytes (nanoparticles, drug compounds) are introduced in the flow. Real-time cellular responses to the analyte are assessed and cell activation or cell uptake profiles are elucidated.

This approach facilitates the study of:

  • Adsorption routes of a given pharmaceutical compound
  • Optimal nanoparticle for drug delivery
  • Half-maximal effective concentration (EC50) of the sample for live cells
  • Mode of entry of nanoparticles or virus into cells

Our customers have successfully performed cell-based assays with analytes ranging from small molecular weight drug compounds, hormones and proteins, up to inorganic nanoparticles and liposomes and extracellular vesicles.


Live cells_Injected

Live cells injected over sensor surfaces

Live cells are introduced in the liquid (cell medium) flowing over the sensor surface, the surface being modified with a given surface coating (e.g. lipid membrane) or surface ligand (receptor). This approach is applicable for binding/adhesion studies and provides information about:

  • Cells’ affinity to surface receptor e.g. peptide
  • Kinetic profile of cell attachment coating
  • Bound cells’ dissociation rate from surfaces
  • Surface specificity of a given cell population
  • Optimal antifouling or antimicrobial properties of a surface

MP-SPR technology has been explored with cells and bacteria using different coatings like hydroxyapatite, lipid membranes, polymers and functionalized with various ligands such as peptides, antibodies and protein complexes.

Reasons to choose MP-SPR for live cells:

  • Suitable for a wide variety of live cells
  • Real-time binding/adhesion studies without labels
  • Extended dataset from cellular responses upon sample loading
  • Flexible selection of cell-compatible surfaces
  • Physiologically relevant conditions maintained during measurements
  • Combination of MP-SPR with electrochemistry and fluorescence
  • AN#170 Profiling of G protein-coupled receptor (GPCR) stimulation by small compounds in live cells
  • AN#167 In-situ capture of T-cells and analysis of membrane receptor affinity with biofunctionalized lipid sensor
  • AN#160 Biosensor for bacteria detection from powdered milk
  • AN#156 Nanoparticle uptake by cells measured using MP-SPR
  • AN#154 Real-time cancer cell detection and cell adhesion on implant materials surface
  • AN#137 Drug – live cell interaction

Or browse our list of MP-SPR related peer-reviewed publications

Do you want to efficiently analyze interactions with live cells or explore cellular uptake and stimulation profiles? Contact us and we will help you to select the optimal configuration of MP-SPR Navi instrument along with dedicated accessories.